The glittering precipitation has long been hypothesized to arise more than 5,000 miles below the surface of Uranus and Neptune, created from commonly found mixtures of just hydrogen and carbon. The interiors of these planets are similar—both contain solid cores surrounded by a dense slush of different ices. With the icy planets in our solar system, “ice” refers to hydrogen molecules connected to lighter elements, such as carbon, oxygen and/or nitrogen.
Researchers simulated the environment found inside these planets by creating shock waves in plastic with an intense optical laser at the Matter in Extreme Conditions (MEC) instrument at SLAC National Accelerator Laboratory’s X-ray free-electron laser, the Linac Coherent Light Source (LCLS). SLAC is one of 10 Department of Energy (DOE) Office of Science laboratories.
In the experiment, the scientists were able to see that nearly every carbon atom of the original plastic was incorporated into small diamond structures up to a few nanometers wide. On Uranus and Neptune, the study authors predict that diamonds would become much larger, maybe millions of carats in weight. Researchers also think it’s possible that over thousands of years, the diamonds slowly sink through the planets’ ice layers and assemble into a thick layer around the core.
The research published in Nature Astronomy on August 21.
Other prior experiments also saw hints of carbon forming graphite or diamond at lower pressures than the ones created in this experiment, but with other materials introduced and altering the reactions.
The results presented in this experiment is the first unambiguous observation of high-pressure diamond formation from mixtures and agrees with theoretical predictions about the conditions under which such precipitation can form and will provide scientists with better information to describe and classify other worlds. (ontinueReading
No comments:
Post a Comment